18,660 research outputs found

    Optimal adaptive control for a class of stochastic systems

    Get PDF
    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law we show that the resulting control achieves optimal cost in the limit, while simultaneously the unknown parameters converge to their true value

    Parameter Estimation of Switched Hammerstein Systems

    Full text link
    This paper deals with the parameter estimation problem of the Single-Input-Single-Output (SISO) switched Hammerstein system. Suppose that the switching law is arbitrary but can be observed online. All subsystems are parameterized and the Recursive Least Squares (RLS) algorithm is applied to estimate their parameters. To overcome the difficulty caused by coupling of data from different subsystems, the concept "intrinsic switch" is introduced. Two cases are considered: i) The input is taken to be a sequence of independent identically distributed (i.i.d.) random variables when identification is the only purpose; ii) A diminishingly excited signal is superimposed on the control when the adaptive control law is given. The strong consistency of the estimates in both cases is established and a simulation example is given to verify the theoretical analysis.Comment: 16 pages, 3 figures; Accepted for publication by Acta Mathematicae Applicatae Sinica (http://link.springer.com/journal/10255

    Dark information of black hole radiation raised by dark energy

    Full text link
    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles [Phys. Rev. Lett 85, 5042 (2000), Phys. Lett. B 675, 1 (2009)]. This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown -Twiss experiment in quantum optics.Comment: 21 pages, 3 figures, complete journal-info of Ref.[4] is added, comments are welcome ([email protected]
    • …
    corecore